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ABSIRALT

Desorption and scattering of a Helium atom from dynamic surfaces are
studied using a Generalized lLangevin Equation formalism for the bulk
solid and time dependent quantum mechanical propagation of the Helium.
The motion of the bulk solid enters the Schrodinger equation as a time
dependent potential coupling the solid surface to the atom. The
propagation of the atomic wavepacket is then followed in coordinate space
using a Fourier transform technique to evaluate the kinetic energy
operator. An attenuating grid is used to remove the wavepacket in the
asymptotic region thus permitting stable calculations for long duration
times. Rates for one dimensional desorption from Tungsten as a function
of temperature are computed which display a change in mechanism. Three
dimensional scattering from Platinum at two temperatures shows
significant non-specular amplitude These results indicate the utility

of this time dependent technique.



I. Introduction

Atom-surface scattering has emerged as a powerful tool in the
investigation of solid surface pr‘oper'ties.1 This type of scattering
event is eminently suited to surface characterization since the particles
do not penetrate the lower layers of the solid and hence do not undergo
multiple reflections. Also, the sensitivity of the atomic probe to
valence, rather than core, electrons encourages the belief that the
observed experimental features will be easily interpretable and provide
an accurate representation of the important surface features. New
experimental beam techniques are able to provide well-resolved spectra
for both elastic and inelastic atom-surface encounters.2 Sticking
probabilities and desorption rates which are important inelastic events
are being measured.3 These advances in the experimental work present a
challenge to theoretical methods, since calculations are necessary to
identify the important spectral features. Accurate simulation of the
experimental results must include elastic and inelastic dynamical quantum
mechanical effects. The purpose of this paper is to describe such a
dynamical simulation based upon a time-dependent gquantum mechanical
formalism which incorporates surface motion.

Previous exact quantum mechanical results have concentrated upon
close-coupled methods.4 These techniques can be guite accurate and
sensitive for the determination of diffraction peaks and resonances which
provide much insight into the nature of the static surface potential.5

However, the close-coupled formalism has two major disadvantages.
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First, the computational effort grows as N3 where N is the number of
channels included. Large unit cells and low incident energies require
many channels, and the cost will become prohibitive in these cases.
Second, and more importantly, close-coupled methods are based upon a
time-independent representation. Manifestly time dependent phenomena,
such as surface motions, cannot be treated

For these reasons, classical and semi-classical treatments of
atom-surface encounters are the most widely applied methods in
simulations of experimental work‘6 In particular, the introduction of
the Generalized Langevin formalism’ *2 for the description of thermal
motion has extended the applicability of classical trajectory methods to
dynamical atom-surface encounters This classical description of the
solid surface is sufficiently accurate for the simulations needed for
experimental interpretation. A classical description of the scattering
particle, however, is generally inadequate In the following, a
consistent scheme is presented which utilizes a classical description of
the surface motion and time dependent quartum mechanical propagation for
the scattering particle

Although the time dependent representation in quantum mechanics
provides a natural description of the experimental set-up -- preparation
of a wave-packet versus a standing wave picture - and an immediate
interpretation in terms of classical trajectory studies, development of
time dependent methods has lagged behind other techniques for particle
scattering. Early work concentrated upon gas phase reactionsla; the

first application to surface collisions :s contained in the work of
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Agrawal and RaFf.l4 This calculation studied two-dimensional

scattering from a dynamical surface using a finite differences
algorithm. The surface was constructed as an assembly of harmonic
oscillators with the surface temperature introduced by the specification
of the initial conditions for these oscillators. The surface-atom
interaction was strictly one-sided in the sense that the quantum motion
was influenced by the classical dynamics but not conversely. As a
result, the total energy was not conserved, and the surface could not
absorb energy from the colliding particle.

In addition to these physical limitations, the finite differencing
scheme would be extremely difficult to extend to a dynamical
threc dimensional simulation. An unnecessarily large mesh results from
the box boundary conditions, which are not fitted to the infinitely
extended surface for the parallel motion and to the free propagating
conditions in the normal direction. More importantly, a major difficulty
arises from the inaccurate description of the kinetic energy operator.
In order to eliminate numerical disper'sionls_16 at least 10 grid points
per wave are needed. Computer storage limitations thus present an
obstacle to any extension to three dimensions.

It should be mentioned that an approximate three-dimensional
calculation for a static surface has been performed for He scattering
from LiF.17 This calculation employs a semi-classical time dependent
propagation of Gaussian wavepackets and could, in principle, be extended

to dynamical surfaces.
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To surmount these difficulties, Fourier transform technigues have
been introduced for the integration of the time dependent Schrodinger
equation.15_16 Two dimensional calculations of surface scattering
compare favorably with close-coupled results.18 Likewise, these
techniques applied to scattering from a stepped surface have demonstrated
the ability of the method to obtain diffraction peaks as well as a direct
calculation of resonance lifetimes and sticking probabilities.19 The
Fourier transform is thus a natural choice for dynamical simulations.
II  Methodology

A. Physical Background

The simulation of a dynamical encounter between a light He atom
and heavy surface atoms is an involved process A complete description
requires the solution of a combined many body problem, since the He atom
has a relatively large de Broglie wavelength which interacts with several
surface atoms simultaneously. 1In turn, the surface atoms are coupled to
the bulk of the crystal atoms which acts as a heat bath. A simulation of
the combined dynamics is impossible without a reduction scheme which
renders the dynamics into a tractable “orm
The first step is to write the Hamiltonian of the combined

system in a form suitable for reduction

H = H (2.1)

He * Hsurf * Hbulk * VHe~surF * VHewbu].k * Vsur‘f—bulk

where H is the free Hamiltonian of He: H . is the surface atom
He surf

Hamiltonian: H is the bulk Hamiltonian: VH

eosurf 18 the potential

bulk
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between the surface atoms and the He atom; VHe—bulk is the potential
interaction of the bulk atoms with He; and Vsurf—bulk is the
surface-bulk interaction. The partition of the Hamiltonian used in
Equation (2.1) already suggests different ways of treating the He atom,
the surface atoms, and the bulk atoms. Because of the wave-like nature
of the He atom, it deserves a full quantum mechanical treatment whereas a
classical dynamical treatment suffices for the metal surface atoms
(except at low surface temperatures). The problem then entails the
propagation of a quantum wavepacket which is coupled to the classical
surface motion. A great simplification ensues if the translational
invariance of the surface is used. B8y invoking periodic boundary
conditions one can restrict the quantum calculation to a finite volume
and the classical motion to four surface atoms. For this reduced motion
a time dependent quantum mechanical calculation may be coupled to the
classical dynamics of the four atoms.

In this mode of representation for the He atom, the time
dependent Schrodinger equation was used to propagate the wavefunction.
In atomic units

19Y (R) =-9% +VQR.P) +V (R) ¥R (2.2)
at 2m ° -
where R represents the He co-ordinates; r = (gl, 4,, d3. g4)
represents the surface co-ordinates of the unit cell atoms; V(R,r) is the
surface-He interaction; VO(B) is the static He-bulk interaction and m
is the He atom mass. The He-surface potential depends parametrically

upon the surface co-ordinates hence is a function of time.
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Simultaneously the surface atom motion is propagated by using the

classical Hamiltonian equation

Pi = - W ogupe — Y R > Ve ik (2.3)
(-)g.i agi ag1
9; = py/m;

where g, and p. are the positions and momenta of the ith atom; m
q 2]
i i s

is the mass of a surface atom and the brackets indicate spatial averaging

over the wavefunction

PR OYR) FR) YR AR (2.4)

~

~
)
v
lii

The consistency of the integration scheme is checked by turning
off the bulk interactions in Equations (2 2» and (2.3). The averaged
Hami ltonian becomes a constant of the motio::

d <H> =0 (2.5)
dt
where <¢H> is the mixed quantum-classical enerqgy defined by
, 2
i+ V + VR, r(t)» + <V

1 2m surf 2m

CHy =

i ™
o<

The integration scheme described by Equations (2 2) to (2.5) is a

general, consistent treatment of a mixed classical-quantum calculation.
To include the dynamics of the bulk atoms, a reduction scheme is

needed in which only the part of the motion influencing the He and the

surface atoms is relevant and need be treated explicitly. For the

(2.6)
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He-bulk interaction only the static contribution is included in the
calculation. This form is chosen to incorporate a physically reasonable
asymptotic Form.19 For the surface atoms the bulk behaves as a heat
bath. TIn this work the bulk dynamics is simulated by a Generalized
Langevin Equation (GLE) description adapted from the work of Adelman and
Doll.7_9 The bulk is represented by a chain of coupled ghost atoms in
which the last atom in the chain is subject to a random force and
friction. The friction and random force are halanced by the
fluctuation-dissipation theorem to maintain the chain at the correct
temperature. This chain can be constructed in such a way that the
correct response function of the bulk is matched. Following Tully,11

these coupled equations are written as

re) = -2 ree) + 017 0 s(e) + FIr(E),5(8),2]
s(6) = 02w r(t) - 0 Zs(t) - ¥ s(t) + E(Y)

where s is the vector describing the ghost atoms which are harmonically
coupled with the primary cell atoms by a frequency A;/Zwo and
individually by mi. Q; is the primary cell harmonic

response and Ep is the cell-ghost force. The frictional constant Y

and Gaussian random function E(t) are related by
E(ET(t)> = 2kTYS(t) (2.8)

These equations fulfill the conditions demanded by the second

fluctuation-dissipation theorem.

(2.7)



B. Computational Background

The quantum mechanical description of the colliding He atom is
given by a time dependent solution of the Schrodinger equation with a
time dependent potential. The integration method used is the Fourier
method given in detail pr‘eviou«:.ly.lt—)—'16 In the Fourier method the
wavefunction is represented on a spatial grid The potential energy
operator is diagonal in this representation, so that the operation v*¥
is a simple multiplication. The kinetic enerqy operator, »V2/2ms
is calculated by transforming ¥ to the diagonal P reprsentation with a
discrete Fourier transform, multiplying by P2/2mS and transforming
back to R space by an inverse discrete Fourier transform. The time
propagation is achieved by second order differencing which preserves the
norm and energy of the particle as well as the time reversed symmetry of
the Schrodinger equation. The main advantages of the method are high
accuracy in representing the kimetic energy operator and numerical
efficiency due to the Fast Fourier Transform (FFT) algorithm.19

Because the method has been described |:>|'eviously15—16 only
those alterations required for surface scattering are described here.
The first step is to define the spatial region to be represented and to
discretize it by a proper choice of grid The interval between grid
points is determined by calculating the maximum momentum, Pmax’ which

can occur in each spatial direction so that the grid size is given by

0LX = “/Pmax

(2.9)
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The Fourier method, because it involves the discretization of a Fourier
transform, necessarily uses periodic boundary conditions. In the spatial
directions parallel to the surface the periodic boundary conditions are
matched to the unit cell. In the normal direction to the surface the
periodic conditions introduce an unphysical constraint on the propagating
wavefunction. This drawback is partially alleviated by the repulsive
part of the surface potential which prevents the wavefunction from
"wrapping around" the interval when approaching the surface. On the
other end, however, the wavefunction must be matched to a freely
propagating solution. The periodic boundary conditions imply that the
wave is reflected from the back side of the repulsive part of the .urface
potential when the end of the grid is reached. A solution to this
difficulty was found by applying absorbing boundary conditions on the
free side. Earlier attempts to use an optical (imaginary) potential
failed because the resulting Hamiltonian was not Hermitian and the
stability properties of the Fourier method were lost.

The solution proposed here entails construction of a buffer zone
at the end of the grid with a width of 8-20 points. 1In this zone the
wavefunction is absorbed gradually in order to eliminate reflections.

The absorption is achieved by multiplying the wavefunction in the zone by
a decreasing sequence after each time step. The sequence used was
exp[—g(n—no)z] where n, is the grid position of the absurbing

boundary; n is a grid position within the zone and g is an adjustable
parameter. Numerical tests performed with a wavefunction moving toward

-3
the boundary showed a residual reflection of 10 using an absorbing
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zone of 14 points. The parameter g and the width of the buffer zone must
be chosen according to the average momentum of the approaching
wavefunction. 1f the absorption is too fast reflections appear at the
boundary; if it is too slow reflections occur at the end of the grid.
The details of the bulk and surface interactions are taken from

the work of Shugard, Tully and Nitzan 10 for one dimensional desorption
and from Tul]_y11 and Grimmelmann, Tully and He]f’and12 for the three
dimensional simulation. In the combined description of the quantum and
classical motion, the accuracy of the quantum integration determines the
time step. The classical integration is done with a Runge-Kut!a-Gill
procedure using this same time step. At each cycle in the integration
the positons of the primary atoms are transferred to the quantum
integrator where the interaction potentia 1is calculated and the
wavefunction advanced one time step. The average forces are then
calculated and fed back to the classical motion A check on the accuracy
of this scheme was performed by turning off the bulk interaction and
evaluating the mixed quantum-classical energy. The error was of the
order 10_6 using single precision on a VAX 750/11.
TI1T. Desorption of He from a Tungsten Surface

As a first application of this technigque, one dimensional desorption
of helium atoms from tungsten was simulated. A typical run was started
by centering a Gaussian wave packet on the attractive wall of the
atom-surface potential. The interaction potential was chosen to be a

Morse interaction of the form

~2a(r—rc) ~2aR ~a(rwrr) -a.R

v (r,R) =D e @ 2 e T e (3.1)

He-surf
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where D = .0012 a.u., @ = 1.2 bohr - and r. = 2.0 bohr. The
initial total energy was negative, insuring that the He is initially
bound to the surface. Equations (2.2) and (2.7) were then propagated in
time. The bulk and coupling parameters were chosen in accordance with
the Debye model9

@y = 1.04 x 10’3

Qé = 3/5 u)‘z)
A% - 2175yl
i
Y = 1rmD/6

R Gaussian random force is chosen for E(t) which is balanced by
friction on the secondary atoms in such a way as to preserve the
temperature of the system. The standard deviation for this distribution
is determined by the temperature of the solid, 02 = (6kTY/mS). A
grid of 128 points was used with a spatial step size Ax = .2 bohr. The
last 14 points on the grid were used for the absorbing boundary terms
discussed above. A time step of .2 atomic units was found to he
sufficiently accurate and stable.

A typical desorption simulation displays all the physical
effects expected of a realistic model. The thermal motion of the surface

atoms transfers energy to and from the He atom allowing it to dissociate
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from the surface. As time progresses, the probability that the initial
wavepacket leaves the surface is monitored Figure 1 displays a sequence
of snapshots of the evolving wavefunction superimposed on the dynamic
atom-surface potential. For comparison, the wavepacket distribution on
momentum space is also shown above the position space wavefunction. The
last figure shows the absorption of the wavepacket by the boundary
terms. The rate of desorption is determined by examining the
normalization of the wavepacket as a function of time. Figure 2 presents
a typical plot of the logarithm of the normalization versus time. After
an initial lapse time, the decay hecomes approximately exponential with
superimposed fluctuations caused by the random character of the classical
motion. The average slope of this graph is the desorption rate. an
improved decay probability was obtained by averaging over the initial
corditions for the simulation. The number of runc< used for the averaging
varied from 1 to 4 as the temperature was lowered The results do not
depend sensitively upon the averaging procedure. Figure 3 displays these
re«<ults for several different temperature: An examination of Figure 3
suggests that the desorption mechanism changes at higher temperatures -
above approximately 300 K. A possible explanation for this behavior is
that at low temperatures the desorptiorn proceeds by a ladder mechanism
with the He atom gradually acquiring more energy until it dissociates.
At higher temperatures, a direct or one-step mechanism applies.
IV Scattering of He from Pt - A Three Dimensional Simulation

A gquantum mechanical three dimensicnal calculation of scattering from
a dynamical surface is a computational challenge. This challenge is

worth taking because such a calculation realistically describes a
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scattering or desorption experiment. One of the more difficult steps in
the calculation entails quantum mechanical propagation of the scattering
particle. In this section, the one dimensional analysis above is
extended to scattering in three dimensions while retaining the classical
description of the dynamical surface.

The unit cell of the metal defines the extent of the surface in which
to continue the He atom. The static contribution to the potential

energy, following Grimmelmann et gl.lz, is chosen to be

9 3
v(z) =D [g_(az -3z > ] (4.1)
Z 15 Z+Z Z4Z

with parameter values DZ = 2 meV, az = 4,62 A and z0 = 0.904
A. The dynamical potential is constructed from a pairwise 6-12

Lennard-Jones interaction between the He atom and each of the Pt atoms

IOREER z 3 ], (4.2)
(t R (t)

where Ri(t) is the time dependent magnitude of the distance between the
He atom and the ith Pt atom in the unit cell, DO = 3 meV, and R0 =

3.80 A. Another contribution to the static potential arises from the
twelve Pt atoms adjoining the unit cell. These contributions are also

assumed to be represented by the Lennard-Jones form of Eqn. (4.2) but
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without the time dependence. The total static contribution is thus

12 R 12 R 6
V() +D_ ¥ [(_o\, . ( g_)] (4.3)
o

Vstatic i =

R
Periodic boundary conditions are used to simulate the extended part of
the surface.

To perform the scattering calculation accurately, it is necessary to
choose the edge of the grid, in the perpendicular z-direction, to be in
the asymptotic region of the surface potential. The number of grid
points is again determined by the maximum momentum which must be

represented in each degree of freedom, as in Egn. (2.9). 1In the present

case, the maximum momentum is estimated by the relation

Pmax = JZm(E—Vmin) (4.4)

For the specific case of He scattering from Pt, an adequate grid for the
(x.y,z) directions is given by (16,16,64) points since the well depth is
1.6 x 1077 Hartrees (4.9 meV) and the unit cell size is 3.81 A. The
grid size essentially determines the accuracy of the calculation and is
the major computational restriction in terms of memory required. A
(16,16,64) grid was approximately 1 24 x 105 words of memory. By
comparison, a finite difference scheme would require 125 times more words
to achieve comparable accuracy.

The propagation of the wavefunction was performed by using the simple
differencing scheme

w1 = Yoy - (21 dO) By (4.5)
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The kinetic energy contribution in HY was calculated by using a three
dimensional FFT routine while the static potential energy part is simply
a multiplication. The twelve coordinates of the four surface atoms in
the unit cell were used to calculate thé dynamical part of V¥ and this
term is added to the static contribution. The twelve averaged forces
necessary for the classical integrator are also calculated at each time
step and returned to the classical mechanical equations of motion. The
Langevin parameters for the surface motion, described by the system of
equations in (2.7) were taken from Tully.11 The resulting 48 coupled
ordinary differential equations were integrated by a Runge-Kutta Gill
procedure. To determine the relative computational effort induced by the
dynamical potential, a completely static surface potential run was
performed. There is, approximately, a 50% increase in computafional time
due chiefly to the calculation of the dynamical potential at each step.
For comparison purposes, timing runs were made on different computers. A
single precision time step used 80 seconds in a VAX 750/11 with a UNIX
operating system; 36 seconds on a VAX 780; 6 seconds on an FPS-164 array
processor; and 1.4 seconds on a CRAY-1.

The actual scattering event was simulated by placing the initial
Gaussian wave packet in the asymptotic region of the surface potential
with a non-zero z-momentum component. The parameters chosen for this
simulation are summarized in Table 1. 7Two extreme temperatures, 100 K
and 800 K, were chosen for comparison, keeping all other parameters
fixed. Figures 4 and 5 depict the scattering event in configuration

space as a function of time for 100 K and 800 K respectively. ‘Figures 6
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and 7 show the same collision in the momentum representation. As may be
seen from the figures, there is significant non-specular scatter. The
main effect of the surface motion 1s to broaden the wave packet after
collision; an effect which is more pronounced at the higher temperature.

The calculations above represent a first step toward a realistic
description of time dependent particle-surface scattering phenomena. A
classical description of the surface is adequate for the light
particle-massive surface scattering over & iarge temperature range. The
difficult quantum propagation of the scattering particle is accurately
handled by the Fourier transform technigue  The present results
demonstrate the feasibility of this computational scheme. Currently,
this technique is being used to study three dimensional desorption
phenomena to assess the effect of more spatial dimensions upon the change
in the desorption mechanism observed in the one dimensional case. Also,
the importance of the dynamical motion of the atoms adjoining the unit
cell is being studied. The technique presented here appears to be quite
versatile and offers a viable approach tu describing particle-surface

interactions.
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Table 1
Parameters used in three dimensional scattering of He from Pt bcc (100)

(atomic units)

Integration Grid Wavepacket Initial Conditions Surface/Bulk Parameters
time increment 5.0 zo 16.5 ms = 3.955 x 105
X  increment 0.45 K, 0.0 ' Q, = 7.44 x 107
y increment 0.45 3 3.0 Q = .5032Q
y g9 d
z increment 0.40 kZ -2.9 8 = 0.5236 Qd
1/2
total time steps 12 x 103 o (width) 3.3 r = 3kT
4 o m
(3
1/2
o = 6kTB

m
S



Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.
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Figure Captions

(a) - (d) One dimensional desorption of a helium
wavepacket as a function of time at 800 K. The dynamic
surface potential is superimposed upon the coordinate space
representation (lower graph). The upper graph displays the

momentum space representation of the wavepacket.

Representative plot of the logarithm of the one dimensional

wavepacket normalization as a function of time.

Inverse temperature plot of the logarithm of the one

dimensional averaged desorption rates

(a) - (e) Three dimensional scattering of He from Pt at
100 K in coordinate space The amplitude of the wavepacket
is plotted in the z-x plane with the solid surface at the

left edge of the graph.
(a) -~ (e) Same as Figure 4 at 800 K.
(a) - (e) Momentum space representation of the wavepacket

amplitude in Figure 4  Several kx values are fixed for

all values of ky and k7 at 100 K.

(a) - (e) Same as Figure 6 at 800 K.
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